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Both brain alpha and theta power have been examined in the

mindfulness meditation literature and suggested as key

biological signatures that potentially facilitate a successful

meditative state. However, the exact role of how alpha and

theta waves contribute to the initiation and maintenance of a

meditative state remains elusive. In this perspective paper, we

discuss the role of frontal midline theta (FMu) activity in brain

white matter plasticity following mindfulness meditation. In

accordance with the previous studies in humans, we propose

that FMu activity indexes the control needed to maintain the

meditation state; whereas alpha activity is related to the

preparation needed to achieve the meditative state. Without

enough mental preparation, one often struggles with and has

difficulty achieving a meditative state. Animal work provides

further evidence supporting the hypothesis that mindfulness

meditation induces white matter changes through increasing

FMu activity. These studies shed light on how to effectively

enhance brain plasticity through mindfulness meditation.
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Introduction
Mindfulness meditation has been shown to induce

positive changes at both behavioral and neural levels

[1�]. A short-term mindfulness meditation, integrative

body-mind training (IBMT), can improve positive moods,

reduce negative moods, decrease levels of the stress

hormone cortisol, and increase anterior cingulate cortex

(ACC) activity [2,3]. Our studies using electroencephalo-

gram (EEG) showed increased theta activity in frontal

midline (FMu) electrodes even during the resting-state

following meditation training [3]. This finding was con-

sistent with other meditation studies [4�,5–7]. Longer
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mindfulness training, such as 2–4 weeks of IBMT,

induced changes in white matter pathways surrounding

the ACC as measured by increased fractional anisotropy

using diffusion tensor imaging [8,9]. The time course of

such changes began with white matter change in axonal

density after two weeks of training, followed by changes

in both myelination and axonal density after four weeks of

training [9].

Mindfulness meditation is a systematic training of

attention and self-control capacities, thus requiring the

active engagement of ACC [1�,2,10,11]. Meditators

during the resting state were found to exhibit increased

brain metabolism in the ACC [12], and another study

found that FMu activity is positively correlated with

glucose metabolism in the ACC [13]. In this paper, we

hypothesize that FMu activity may increase proliferation

of active oligodendrocytes, leading to increased myelina-

tion, thereby improving structural connectivity between

the ACC and limbic areas [14,15].

Theta and alpha activity following meditation
Beta brainwaves (15–40 Hz) are often associated with

thinking and high arousal. Compared to beta, alpha

waves (9–14 Hz) are slower and higher in amplitude

and represent a low arousal, restful and relaxed state.

Theta waves (5–8 Hz) have even slower frequency and

greater amplitude and compared to alpha [16]. Typically,

a meditator needs to initiate and maintain a relaxed and/

or calm state before entering a deeper meditative state.

This change in state often necessitates switching from

beta activity to alpha activity and subsequently to theta

activity. However, EEG effects of mindfulness medita-

tion have shown mixed results, sometimes showing

increases, decreases, or even no differences across all

bandwidths when compared to resting state and task

state studies [4�,5–7,17–19].

A recent systematic review including 56 papers with a

total 1715 subjects (1358 healthy individuals and 357

psychiatric patients) found that mindfulness meditation

was most commonly associated with enhanced alpha and

theta power as compared to an eyes closed resting state.

However, no consistent patterns were observed in beta,

delta and gamma bandwidths [4�]. These results are in

line with our series of IBMT studies demonstrating

increased theta (and some alpha) activity in ACC and

adjacent prefrontal cortex (PFC) and better performance

on tasks of attention, working memory, creativity and

problem solving [1�,2,10,20–22].
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An earlier systematic review also indicated that medita-

tion induces brain changes in the ACC and PFC and that

theta and alpha activities are related to proficiency of

practice [23]. This finding supports the hypothesis that

mindfulness meditation is associated with increased alpha

and theta power in both healthy and patient populations.

Yet different types of meditation practices or techniques

may involve or emphasize different components and may

elicit different brainwaves [4�,10,23,24,25�].

In addition to the wide range of mindfulness techniques,

different stages of the same practice may also contribute to

differences in behavior, physiology and brain activity

[1�,3,10,24]. We proposed three stagesof meditationpractice

that are related to different brainwaves and brain changes

[1�,24,26–29]. The early and middle stages involve effortful

control with more beta and alpha activity, whereas the

advanced stage engages more effortless control and thus

more theta and alpha activity [1�,10]. The early stage of

meditation often involves lateral PFC and parietal areas

[24,25�,26–29]. During the middle stage, people begin to

exertan appropriate effort to minimize distractions and mind

wandering. Distraction involves diverse brain networks such

as frontal, parietal, temporal cortex and limbic areas depend-

ing on the strategies used [1�,26–28]. In the advanced stage,

little or no effort is needed; instead the meditative state is

maintained by activity in the ACC, striatum and insula,

accompanied by high parasympathetic activity and reduced

activity in the lateral PFC and parietal areas [1�,10].

Considering the model of successive stages mentioned

above [26–29], we propose that alpha activity serves as a

biomarker of a state change from mind wandering to a

relaxed and calm mental state during the preparation for

meditation. Theta power serves as a biomarker of medi-

tative state itself and is associated with brain changes.

Consistent with the literature, FMu activity and somato-

sensory alpha rhythms are often observed during execu-

tive functions, cognitive control and the active monitoring

of sensory information [10,30,31]. Increased FMu activity

is also detected during meditation compared to mind

wandering [4�,5–7]. In a study examining different medi-

tative states, increased FMu activity (and decreased beta

and low gamma) indexes a deeper meditative state, while

alpha activity is increased in all meditative states,

suggesting that it is not depth-related [7].

Network and cellular mechanisms of white
matter changes
The ACC is part of an executive network that is involved

in the control of feelings and thoughts.

In addition to the ACC, the executive network involves

the anterior insula and underlying striatum [32�]. Our

meditation studies found improved connectivity in

pathways surrounding the ACC following mindfulness

meditation [8,9]. Moreover, other studies of mice have
www.sciencedirect.com 
indicated that both low frequency stimulation and motor

learning can activate oligodendrocytes and thus change

connectivity [33,34]. We hypothesized [14] that theta

range stimulation can serve to increase the number of

active oligodendrocytes ready to support myelination. An

increase in myelination would reduce the g ratio (axon

size divided by axon size + myelin), thus supporting

behavioral change by increasing the speed and accuracy

of connections between brain areas [35].

To examine the cellular mechanisms of white matter

changes, we conducted mouse studies [36,37]. We

implanted lasers in the ACC of genetically altered mice

to increase or decrease spiking of output neurons when

stimulated bylaser lightat1,8 or40 Hz incomparison with a

non-stimulation control. Wefoundthat increased spikingof

ACC neurons during low-frequency stimulation (1 and

8 Hz) producedan increase in the cellscapable of increasing

myelin (oligodendrocytes). Higher frequency stimulation

or rhythmic decreases in output firing were not effective in

activating dormant oligodendrocytes. The increase in

active oligodendrocytes resulted in the hypothesized

reduced g ratio as measured by electron microscopy in

the corpus callosum near the site of stimulation but not

in control sites remote from stimulation.

We also found a behavioral change in mice whose output

had been increased by low frequency stimulation. Mice

stimulated with 1 and 8 Hz increased time spent in the

light in a light/dark box paradigm [37]. This suggested

that these mice had decreased anxiety, conceptually

similar to what is observed following meditation training

in humans [1�,2].

Since 1 Hz resulted in the largest increases in myelinating

cells and 8 Hz produce the largest behavioral change we do

not know the optimal stimulation. It could be that the

optimal stimulation lies between 1 and 8 Hz (within the

theta range for mice), or it could be that the best rhythm for

stimulating cells is different than the optimal rhythm for

changing behavior. However, our results show that low-

frequency stimulation can result in activity-dependent

remodeling of myelination, giving rise to enhanced

connectivity and altered behavior. These studies demon-

strated the role of low frequency (near theta) stimulation in

altering white matter, thus supporting our hypothesis on

how meditation changes white matter [36,37].

Conclusions
This paper summarizes human and animal studies that

demonstrate increased FMu activity is associated with

brain white matter plasticity, suggesting that this could be

the mechanism for changes in white matter following

mindfulness meditation. Based on animal studies, the

underlying cellular mechanisms involves increased oligo-

dendrocyte proliferation which results in lowered g ratio

and an increase in myelination. These results shed lights
Current Opinion in Psychology 2019, 28:294–297
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on how meditation may induce brain white matter

changes through increased FMu activity. We believe that

improved plasticity through mindfulness meditation,

depends on eliciting deeper meditative states with lower

frequency and greater amplitude EEG during and

following training.

As a field, we are at an exciting and critical stage for

elucidating the precise mechanisms of action through

which mindfulness training and practices induce their

benefits on brain, physiology and behavior. Finding

appropriate, theory-driven and empirically supported

indexes and biomarkers would greatly improve our like-

lihood of success and make meaningful contribution to

the field of mindfulness.

According to our lines of work focusing on self-control

networks involving the ACC and brain plasticity in white

matter surrounding this key region following mindfulness

meditation, we propose that FMu activity could play an

important role. For future scientific and clinical endeavors

that seek to specifically strengthen and enhance brain

plasticity through mindfulness meditation, FMu activity

may be an appropriate index at the initial stage of training,

especially during training, for monitoring and providing

useful feedback to participants with regard to their prac-

tice and depth of meditative states. Deficits in self-control

and activation of the ACC have been associated with

many disorders such as ADHD, addiction, autism, mood

disorders, dementia, schizophrenia, and others. Given

that FMu activity is also positively correlated with glucose

metabolism in the ACC and increased FMu activity is

associated with brain white matter plasticity related to

self-control networks such as the ACC, FMu activity may

further serve as an important biomarker for treatment of

mental disorders and one of the critical steps in the

neurophysiological cascade of brain plasticity. Using it

as a putative mechanistic target for understanding brain

plasticity and its associated behavioral changes would be

useful not only for mindfulness research, but also for

investigations that go beyond our field of study.
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